
Technical Note Multiple Class Inheritance

© Consyst SQL Inc. All rights reserved. ● 1

Technical Note

Multiple Class Inheritance

Overview

The .NET Framework does not support multiple class inheritance. Some people will say, “Who

needs multiple inheritance?” My answer is very short… Me! (And if you are reading this article, you

probably do too.) I don’t need it often but when I need it, I need it badly. Because .NET does not

support multiple inheritance, we have to simulate it through delegation. This can be long and

tedious to implement. For this reason, we created a small utility called MHGenerator that

automates the creation of code simulating multiple inheritance.

This article describes how to simulate multiple inheritance in C#. It also describes how to use the

MHGenerator utility to automate this process.

Technical Note Multiple Class Inheritance

© Consyst SQL Inc. All rights reserved. ● 2

Multiple Class Inheritance

Multiple inheritance

The .NET Framework does not support multiple inheritance. It supports single inheritance of

classes, but allows multiple interface implementation. Single inheritance is simple to achieve: just

define your class and add a : BaseClass in your declaration.

Figure 1. Single inheritance.

public class A : System.Windows.Forms.Form {

 …

}

To simulate multiple inheritance, you can use composition, redefine the base class and delegate

the job to the embedded class.

Figure 2. Simulating multiple inheritance using composition.

public class BaseClassA {

 private A m_outer;

 public BaseClassA(A outer) {

 m_outer = a;

 }

Technical Note Multiple Class Inheritance

© Consyst SQL Inc. All rights reserved. ● 3

 public void DoSomething() {}

}

public class A : System.Windows.Forms.Form {

 private BaseClassA m_del;

 public A() {

 m_del = new BaseClassA(this);

 }

 public void DoSomething() {

 m_del.DoSomething();

 }

}

In this simple case, everything seems to work fine. However, you still cannot use class A when

class BaseClassA is expected (in other words, class A is not a BaseClassA). You can implicitly cast

your class, and thereby pass a reference to class A in a method expecting a class BaseClassA:

public class A : System.Windows.Forms {

 private BaseClassA m_del;

 …

 public static implicit operator BaseClassA(A type) {

 return(type.m_del);

 }

}

You can also allow the explicit casting from BaseClassA to A:

public class BaseClassA {

 private A m_outer;

…

public static explicit operator A(BaseClassA type) {

 return(m_outer);

}

…

}

Still, several problems remain:

• How to support the inheritance of methods and properties?

• How to handle protected members?

• How to handle events?

Inheritance of methods and properties

What happens if a method in BaseClassA is defined as virtual? It means that the method can be

overridden. When overridden, the new method must be used each time a user of the class calls

the method. The new method must also be called if referenced in the base class.

public class BaseClassA {

 public virtual void DoSomething() {

 MessageBox.Show("BaseClassA"}

 }

 public virtual void DoSomethingElse() {

Technical Note Multiple Class Inheritance

© Consyst SQL Inc. All rights reserved. ● 4

 DoSomething();

 }

}

public class A : System.Windows.Forms {

 private BaseClassA m_del;

 public A() {

 m_del = new BaseClassA();

 }

 public virtual void DoSomething() {

 m_del.DoSomething();

 }

 public virtual void DoSomethingElse() {

 m_del.DoSomethingElse();

 }

}

This code does not work as expected. If you create a new class B inheriting from class A and

override the method DoSomething, problems occur.

public class B : A {

 public override void DoSomething() {

 MessageBox.Show("B");

 }

}

If you call method B.DoSomething, message B is displayed. Unfortunately, if you call method

B.DoSomethingElse, message BaseClassA is displayed, which is not what you want.

To solve this problem, you will have to use a more complex scenario involving an interface and

what we call a “delegater class”. A delegater class is a class that dispatches calls to methods or

properties to the base class (in our example, BaseClassA) or to the outer class (in our example, A).

Therefore, you can use the following solution:

Figure 3. Multiple inheritance through an interface and a delegater class.

public interface IBaseClassA {

 void DoSomething();

 void DoSomethingElse();

}

public class BaseClassADel : BaseClassA {

 private IBaseClassA m_outer;

 public BaseClassADel(IBaseClassA outer) {

Technical Note Multiple Class Inheritance

© Consyst SQL Inc. All rights reserved. ● 5

 m_outer = outer;

 }

 public static explicit operator A(BaseClassADel type) {

 return(type.m_outer as A);

 }

 public override void DoSomething() {

 m_outer.DoSomething();

 }

 public void _baseDoSomething() {

 base.DoSomething();

 }

 public override void DoSomethingElse() {

 m_outer.DoSomethingElse();

 }

 public void _baseDoSomethingElse() {

 base.DoSomethingElse();

 }

}

public class A : System.Windows.Forms.Form, IBaseClassA {

 private BaseClassADel m_del;

 public A() {

 m_del = new BaseClassADel(this);

 }

 public static implicit operator BaseClassA(A type) {

 return(type.m_del);

 }

 public virtual void DoSomething() {

 m_del._baseDoSomething();

 }

 public virtual void DoSomethingElse() {

 m_del._baseDoSomethingElse();

 }

}

Now, if you try again to inherit from class A and override method DoSomething, everything works

well. Calling method B.DoSomethingElse correctly displays B.

The use of the IBaseClassA interface can seem like an overkill, but it will enable you to use explicit

interface definition later to solve accessibility problems on virtual protected methods.

Virtual protected member

What happens if the DoSomething method is defined as protected instead of public? At the

interface level, you cannot specify an accessibility modifier. The method is implicitly defined as

public. In the delegater class, the method cannot be defined as protected either. Doing so will

make the method inaccessible from class A. To implement the IBaseClassA interface, class A must

define the DoSomething method and make it public. However, doing so makes public a method

that the base class specifies as protected.

Technical Note Multiple Class Inheritance

© Consyst SQL Inc. All rights reserved. ● 6

To solve this problem, you can simply choose to implement the IBaseClassA.DoSomething

method explicitly:

public class A : System.Windows.Forms.Form, IBaseClassA {

 …

 protected virtual void DoSomething() {

 m_del._baseDoSomething();

 }

 IBaseClassA.DoSomething() {

 DoSomething();

 }

 …

}

The explicit definition of the DoSomething method lets you implement the IBaseClassA interface.

Because this method is defined explicitly, you can access it directly only from a reference to the

interface IBaseClass (a cast to the interface is needed), not from a reference to class A. The new

definition of DoSomething being defined as protected, everyone is happy.

The implementation of properties follows the same approach as for the methods.

Events

Now add an event to class BaseClassA as follows:

public class BaseClassA {

 public event System.EventArgs MyEvent;

 public void DoSomething() {}

}

To implement inheritance from this class through delegation, you must be able to access the

event through class A. You can simply add the event to this class.

public class A : System.Windows.Forms.Form, IBaseClassA {

 private BaseClassADel m_del;

 public A() {

 m_del = new BaseClassADel(this);

 }

 public event System.EventArgs MyEvent; // Bad! No! Don’t! Grr…

 …

}

Doing so does not give you access to the event of class BaseClassA. It simply redefines a new

event with the same name. Registering to this event will not register to the event of class

BaseClassA. In fact, what you want is to allow registration to the event of class BaseClassA from

class A. Fortunately, C# lets you do that using a not very well known syntax:

public class A : System.Windows.Forms.Form, IBaseClassA {

 private BaseClassADel m_del;

 public A() {

 m_del = new BaseClassADel(this);

 }

 public event System.EventArgs MyEvent {

 add {

Technical Note Multiple Class Inheritance

© Consyst SQL Inc. All rights reserved. ● 7

 m_del.MyEvent += value;

 }

 remove {

 m_del.MyEvent -= value;

 }

 }

 …

}

All this is very nice. If you want, you can simulate multiple inheritance in C#. To inherit from a class

through delegation, you just have to type code, code and more code. Like most good

programmers, you probably hate to type a massive amount of code that does nothing but

delegate. Being involved in the development of Rep++, which makes intensive use of reflection, I

grabbed the idea of reflection to create a utility program that generates the code needed to

inherit through delegation.

MHGenerator

The MHGenerator program is a command line utility generating a class in C# that inherits directly

from a base class and indirectly from a second base class through delegation. Figure 4 illustrates

what the utility does.

Figure 4. MHGenerator generates class A and its associated delegater class BaseClassADel.

In this Figure, A is the new generated class. A directly inherits from the Form class. A delegates to

class BaseClassA through the BaseClassADel delegater class. In this scheme, A seems to inherit

from both Form and BaseClassA classes.

To use this utility, you must pass the arguments described in Table 1. You can also call the utility

using a command file by using the @ prefix in front of the file.

Technical Note Multiple Class Inheritance

© Consyst SQL Inc. All rights reserved. ● 8

Table 1. Arguments to the MHGenerator command line utility.

Argument Description

/as:AssemblyName You must specify the full path of the assemblies containing the source classes and

their references. The following assemblies are already loaded by the utility and must

not be specified: mscorlib, System.Windows.Forms and System.Web. Each assembly

must have its own /as clause.

/if:InheritFromClassName Name of the class from which the new class directly inherits. This class must have a

public, parameterless constructor.

/dt:DelegateToClassName Name of the class to which the new class delegates.

/nt:NewTypeName Name of the new class.

/sc:Scope Scope of the new class. The scope can be public, protected, private or internal.

/out:OutFileName Name of the resulting file. If not specified, the name of the file is NewTypeName.cs

where NewTypeName is the name of the new class.

/hf:HelpFile Name of a generated XML help file. If this switch is used, the help file of the

generated member will use this help file as a template.

/hl Hide the generated code to the debugger using the #line hidden attribute. Using

this switch eases the debugging of the application.

/v Verbose. Provides more information while generating the resulting class.

/w Display warnings, if any.

Limitations

The generator requires that the base class from which the new class inherits directly (in our

example, Form) defines a parameterless, nonprivate constructor. The class that is delegated to

(BaseClassA), however, does not have this prerequisite. It only needs one or more accessible

constructors. Effectively, the constructor of the new class needs to call the base classes’

constructors. If both base classes (Form and BaseClassA) have many constructors, things get more

complex. It can also cause constructor overloading clashes.

Name clash

What happens when the two base classes contain methods with the same signature? Must you

take the methods from the first or the second class? Or delegate to both? There is no way to tell.

For this reason, MHGenerator will generate the conflicting methods in the delegater class

(BaseClassADel) but will not add them in the final generated class. It will also display a warning (if

the /w option was specified). If necessary, the problem can be fixed later by subclassing the

generated class (A) and calling the delegater class method.

In .NET, all objects inherit from System.Object, continually causing name clashes. Because of that,

all methods in System.Object are ignored by the generator in order to remove the related

warning.

What about inheriting from three base classes?

To inherit from three base classes, use the generator twice. To inherit from four base classes, well,

I’m sure you get the picture...

